PETFOOD FORUM

Where the GLOBAL PET FOOD INDUSTRY does business

Starch gelatinization in extrusion cooking of pet foods:

Balancing quality and sustainability

— Ed de Souza

April 28-30, 2025, Kansas City, Missouri, USA

#petfoodforum

X

Topic Overview:

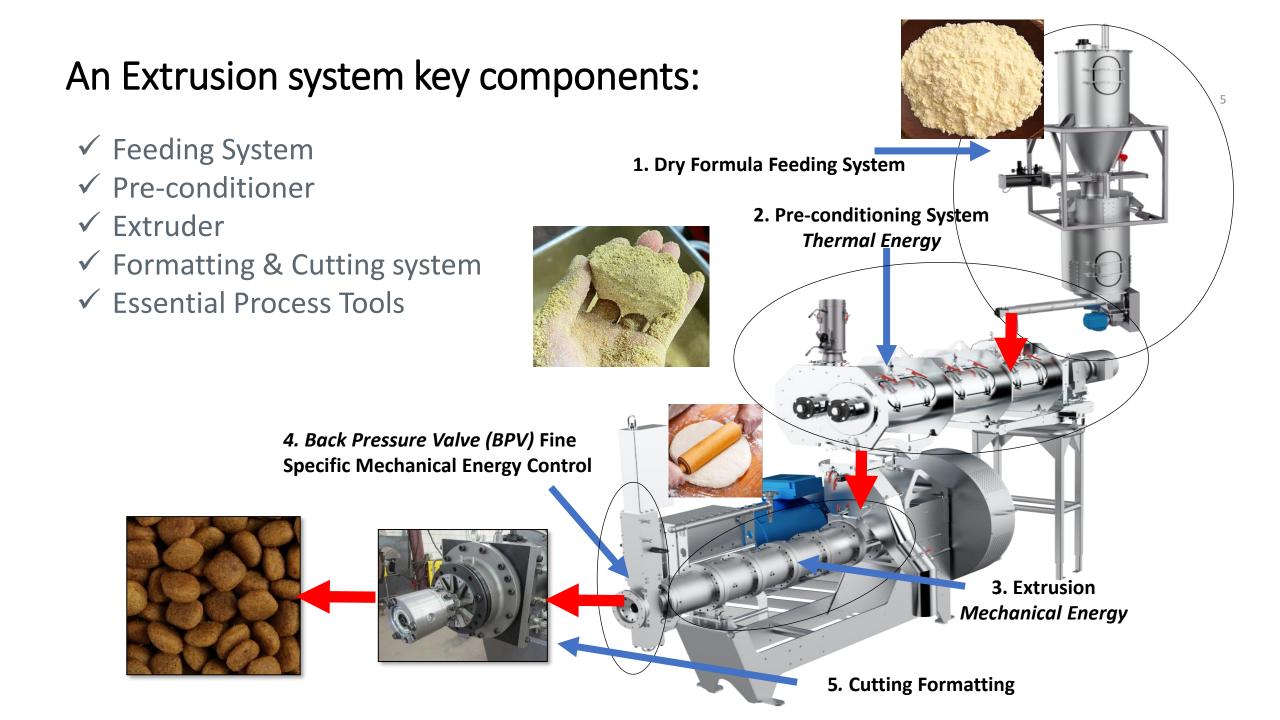
Importance of starch gelatinization in pet food production Its role in digestibility, texture, and

palatability

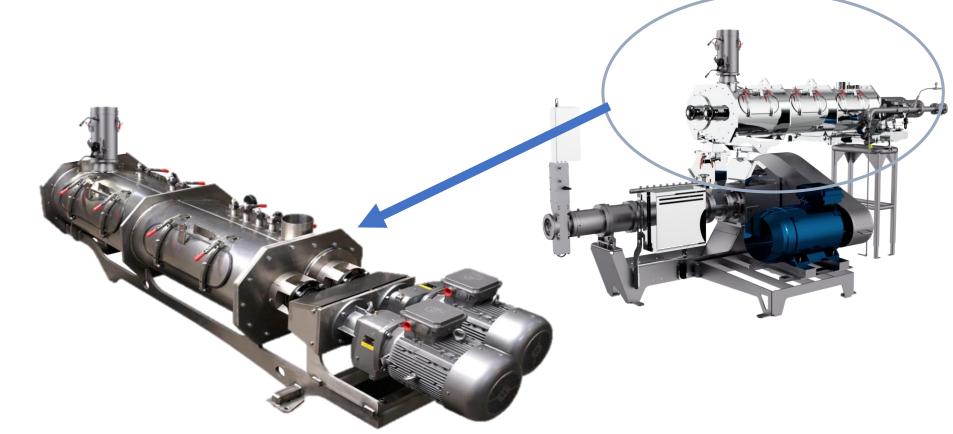
Key Objectives:

Address challenges of over-shearing Explore solutions for sustainable and profitable extrusion cooking

Starch Gelatinization


- Definition:
 - Heat and water cause starch granules to break down and swell.
- . Importance in Pet Food:
 - Enhances digestibility
 - Improves texture and palatability (flavor)
 - **Quality Control Parameter:**
 - Standard practice: achieving specific gelatinization levels: lab testing & feeding trials.

Extrusion, a Unique process!


- Thermal + Mechanical Energy:
 - Specific Thermal Energy (STE) is essentially Steam Cooking
 - Specific Mechanical Energy **(SME)** is fundamentally Electricity
- Versatility:
 - Complex formulations and high number of raw materials
 - High Temperature + Short Time Process (HTST)
 - Shelf-Stable and nutritious pet foods (12-24 months).

Advancements in Preconditioning Systems Design

- Mix
 - Hydrate
 - Heat

High Intensity Preconditioner (HIP) ✓ A Key component to the Thermal Cook Extrusion

Effects of HIP Radial Speeds on Mixing Efficiency

1. Shaft Speed – Directly impacts distributive mixing and uniformity.

2. Differential Speeds – Improve distribution and homogeneity (FIFO).

3. Retention Time (Eureka!) – Longer retention, combined with higher mixing intensity, enhances consistency.

- **4. Hydration** Greater mixing intensity enhances ingredient integration.
- **5. Clumping** Controlled intensity prevents unwanted clumping.

7

The Challenge of Over-Gelatinization:

Key Points:

- Excessive shearing and overcooking
- Nutrient degradation
- Loss of functional properties
- Reduced product quality

Impact on Quality:

Compromises formatting and texture
Off spec Products

 Starchy mixtures under extrusion conditions exhibit non-Newtonian behavior, which results in reduction of viscosity as shear stress increases (also known as shear-thinning)

Economic and Environmental Impact of Over-Shearing:

• Energy Consumption:

- · Over-processing increases energy use
- · Higher operational costs

• Sustainability Concerns:

- · Contradicts eco-conscious goals
- Increased waste and reprocessing
- · Decrease lifespan of extrusion equipment

Balancing Gelatinization for Optimal Results

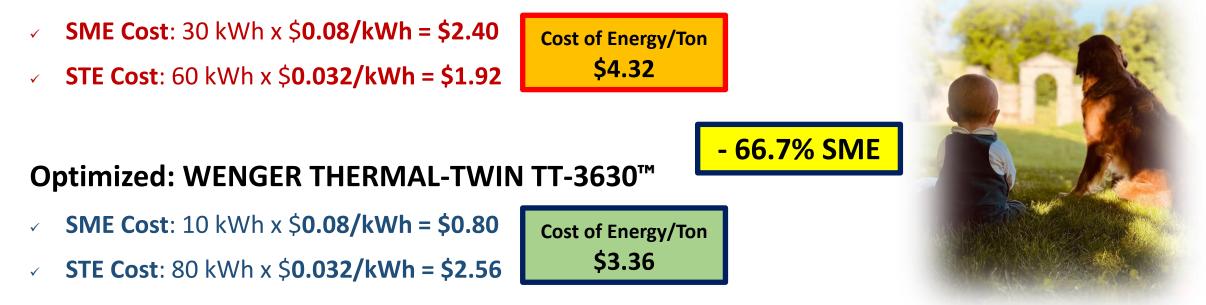
- Optimized Gelatinization:
 - Retains nutrients
 - Minimizes waste
 - May generate Resistant Starch (RS)

• Benefits:

- Improved nutritional profiles
- Cost efficiency and profitability
- Reduced environmental impact
- Gut Flora substrate

The Thermal Cooking Extrusion

- Low Shear/High Thermal Extruder
- Typically, a longer L/D (barrel length)
- Unique screw profile
- High-capacity barrel steam injection (up to 12%)
- 300% increase in steam injection.



Cost Calculation: Baseline vs. Optimized Process

How Rebalancing Energy Usage Reduces Costs and Improves Product Quality Calculations:

Baseline: Legacy Extrusion System: Single Screw or Twin-Screw extruders

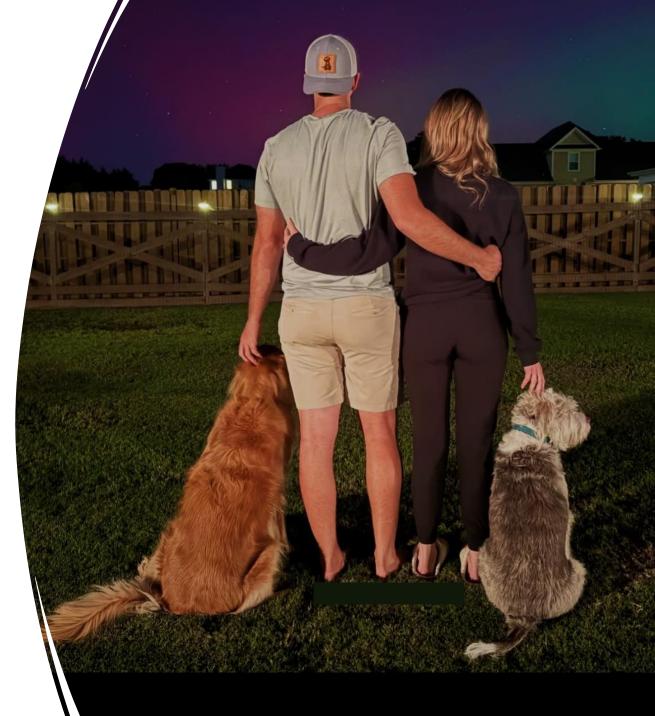
• Thermal Energy is 60% cheaper per kW-h than SME (electricity). Utilizing more Thermal Energy and less mechanical energy can reduce overall energy costs by 29%!

Central U.S.: Electricity (Industrial): ~\$0.078 per kWh (7.8 cents) Steam from Natural Gas (85% Boiler Efficiency): ~\$0.0321 per kWh (3.21 cents)

Cost Calculation: Baseline vs. Optimized Process

- How Rebalancing Energy Usage Reduces Costs and Improves Product Quality
 - 1. Energy Cost Comparison (Central USA, March 2025)

SCENARIO	SME (Electricity) kW-h/Ton	STE (Steam) kW-h/Ton	Total Energy Cost (\$)
Baseline 30 kW-h (SME)/60 kW-h (STE)	30	60	4.32
Optimized 10 kW-h (SME)/80 kW-h (STE)	10	80	3.36
ENERGY SAVINGS PER TON			\$0.96


STEPS towards Energy Efficiency & Decarbonization Corporate Plan:

- Energy Cost reduced by approximately 29% = 0.96 (4.32 3.36).
- Energy Savings of \$115,000 every 120,000 tons produced!

Science and Technology in Extrusion Cooking

- **Technological Solutions:**
 - Advanced cooking technologies
 - Precision control of cooking levels
 - Energy-smart practices in extrusion
- Scientific Insights:
- Dialing in gelatinization levels for specific product needs is the key to a more sustainable extrusion with health benefits!

Thermally Cooked Pet Food Grain-Free Based Recipe

Recipe	% DRY
Chicken Meal Low Ash	35.000
Whole potato flour (WPF100)	30.000
Tapioca Starch	15.000
Pea Protein Concentrate (50% min -75% max)	10.000
Oat Fiber	8.000
Flax meal	2.000
Total	100.000

- ✓ Low/Low Shear Processing
- ✓ Grain-Free Diet @ \$1,500.00/Ton
- ✓ No meat
- ✓ Fine grind
- ✓ Dried & Oil Coated

Thermally Cooked Pet Food Grain-Based Recipe

Recipe	% DRY
Ground Corn	38.000
Chicken Meal Low Ash	28.000
Ground wheat	18.000
Wheat midds	16.00
Total	100.000

- ✓ Low Low Shear Processing
- ✓ Grain-based Diet @ \$700.00/Ton
- ✓ No meat
- ✓ Fine grind
- ✓ Dried & Oil Coated

Thermally Cooked 70% Meat Grain-Free Based Recipe

Recipe	% DRY
Chicken Meal Low Ash	35.000
Whole potato flour (WPF100)	30.000
Tapioca Starch	15.000
Pea Protein Concentrate (50% min -75% max)	10.000
Oat Fiber	8.000
Flax meal	2.000
Total	100.000

- ✓ Low/Low Shear Processing
- ✓ Grain free
- ✓ 700 kg of meat to 1000 kg of dry formula (70% meat) @ \$600.00/Ton
- ✓ Fine grind
- ✓ Dried & Oil Coated

Thermal Cooked 70% Meat on Grain-Based Recipe

Recipe	% DRY
Ground Corn	38.000
Chicken Meal Low Ash	28.000
Ground wheat	18.000
Wheat midds	16.00
Total	100.000

- ✓ Low/low Shear Processing
- ✓ Grain-based diet
- ✓ 700 kg of meat to 1000 kg of dry formula (70% meat)
- ✓ Fine grind
- ✓ Wet off-Extruder

Key Takeaways:

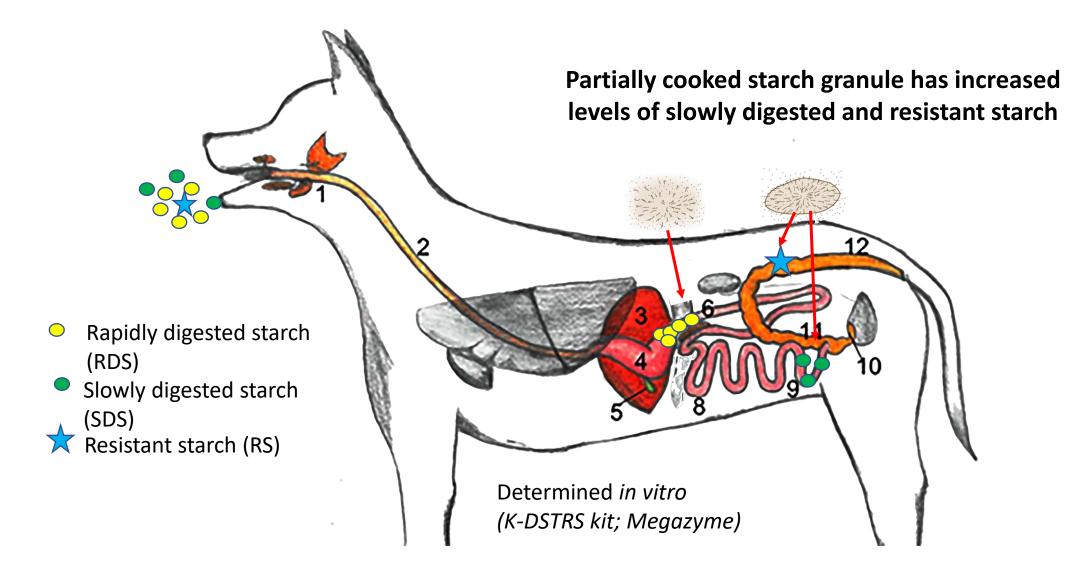
- Thermal cooking extrusion enhances efficiency, quality, and sustainability
- Ideal for high-performance pet food production
- A smart investment for future-proofing extrusion operations
- Solid STEPS towards Energy Efficiency & Decarbonization Corporate Plan!

When the package says "serves 5," but you ate it all in one sitting

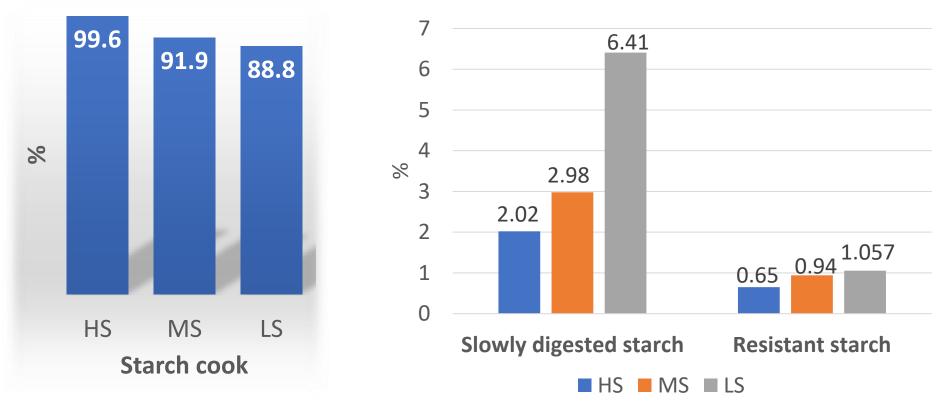
Case Study

- Examples of successful optimization in pet food manufacturing
- Results: Improved taste, palatability, quality, sustainability, and profitability

Road Map to Enhancing Gut Flora and Gut Health

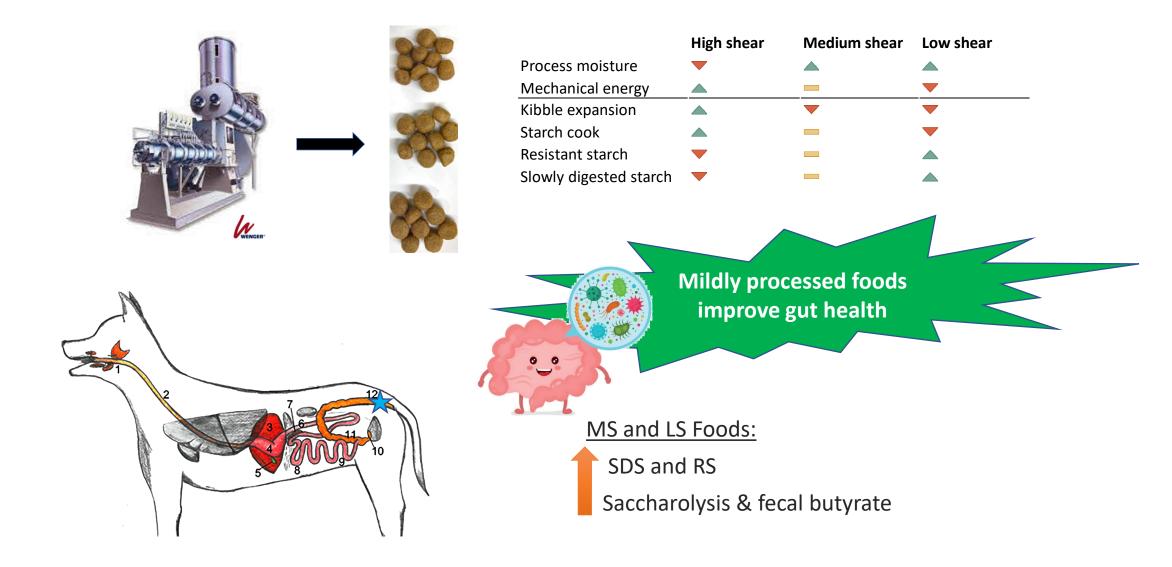

A low to medium shear extruded kibble with greater resistant starch type II leads to improvements in the gut health of dogs

- Isabella Corsato Alvarenga, PhD DVM
- Post-doc at Colorado State University, 2024
- PhD, Kansas State University, 2021
- M.S., Kansas State University, 2016
- DVM, University of São Paulo, 2012



Starch gelatinization affects nutrition

Different extrusion parameters applied to a single recipe created targeted levels of starch fractions


23

In-vitro starch analyses Rapidly (RDS), slowly (SDS) and resistant (RS) starches measured by enzymatic kit (K-DSTRS Megazyme Inc.) Starch cook (Glucoamylase method; Mason and Rokey, 1982)

Credit & Courtesy: Isabella Corsato Alvarenga, PhD DVM

Study Summary

Thermal Cook Experiment Chicken Meat vs. Chicken Meal in Cat Foods

- 1) Chicken meat at 0, 40, 80, and 120% replaced chicken meal in a balanced diet
- 2) Equivalent to 0, 13.3, 26.7, and 40.0% meal in the diet

Ingredient	Total Tract Apparent Digestibility of Crude Protein	Apparent Metabolizable Energy
Chicken Meal	73.90%	3,500 kcal/kg
Chicken Meat	91.27% (+ 23.5%)	5,432 kcal/kg (+55.2%)

Highly digestible protein and high energy density

*UNESP-WENGER RESEARCH led by:

Priscilla Martins Ribeiro – PHD Student under Aulus Advisory.

Contributions on the Scientific Research by:

Galen Rokey – Former Pet Food Extrusion Processing Director at Wenger Mfg, LLC.

Aulus Carciofi – Professor at University of the State of Sao Paulo – UNESP, researcher, cat and dog nutritionist.

Fabiano Sa, Thaila Putarov, Fernanda S. Mendonça – Nutritionists for Dog & Cat.

Implementation Strategies

- Steps for Manufacturers:
 - Monitor and measure energy levels
 - Monitor and measure gelatinization levels
 - Optimize extruder settings (Legacy)
 - Invest in energy-efficient technologies
- Industry Best Practices:
 - Balancing quality, cost, and sustainability goals

Key Takeaways

• Summary:

- · Starch gelatinization is a critical process parameter
- Over-gelatinization leads to quality and cost challenges
- Optimization achieves quality, efficiency, and sustainability

• Future Outlook:

- Advancements in science and technology
- Continued industry improvement
- **AI** to fine tune process conditions

Conclusion

- · Reinforce the importance of controlled gelatinization
- Highlight the benefits for pets, manufacturers, and the planet
- · Call to action for adopting optimized practices

Q&A

• Open floor for questions

MS. PEPPER

BELLA

Bella

BOMBON

Thank you!