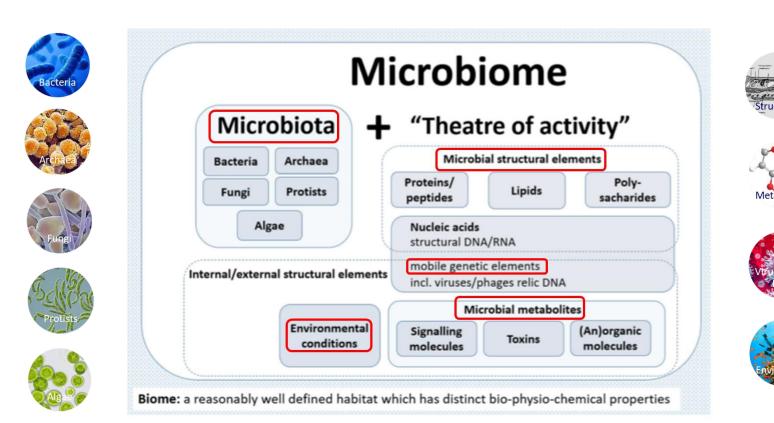

A Forgotten Organ – The Gut Microbiome of Dogs and Cats

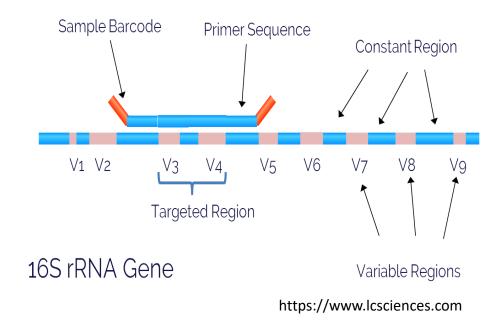
Shiguang Yu, PhD, MBA
Global Director – Pet Nutrition & Applications
Taste, Texture & Health

Gut microbiota increases the body fat in germ free mice


Backhel et al., 2004

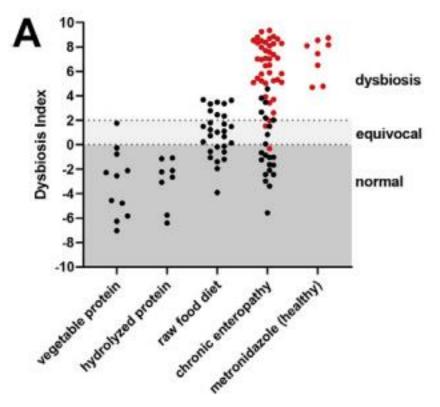
Gut microbiome organ axis

Microbiome



Microbiome assessment

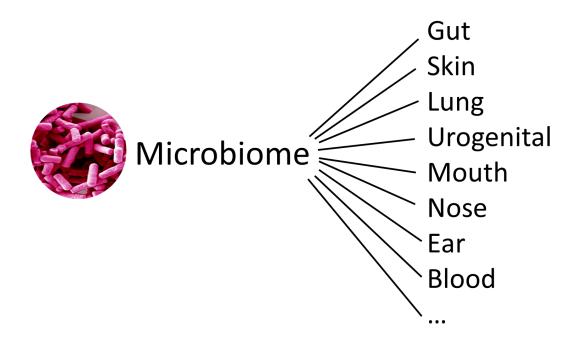
- 16S rRNA gene sequencing
- Metagenomics (shotgun sequencing)
- Metatranscriptomics
- Metabolomics
- Quantitative real-time PCR
- Fluorescence in situ hybridization (FISH)
- Bacterial culture

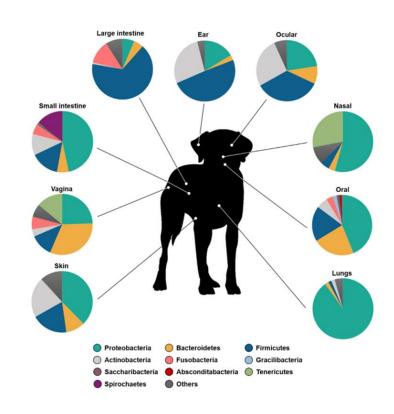


What is a healthy microbiome?

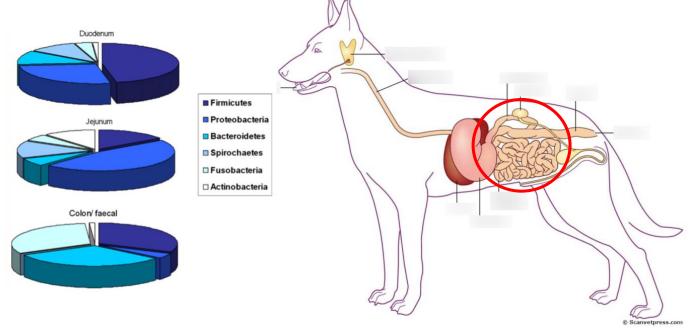
- α-diversity: within a sample
- β-diversity: between samples
- Observed OTU
- Loss of beneficial bacteria
- Overgrowth of pathogenic bacteria
- Dysbiosis: imbalance of microorganisms
 - Canine Dysbiosis Index (< 2)
 - o Faecalibacterium
 - Fusobacterium
 - C. hiranonis
 - o **Blautia**
 - o uricbacter,
 - **Streptococcus**
 - o E. coli

#petfoodforum




Pilla & Suchodolski, 2021

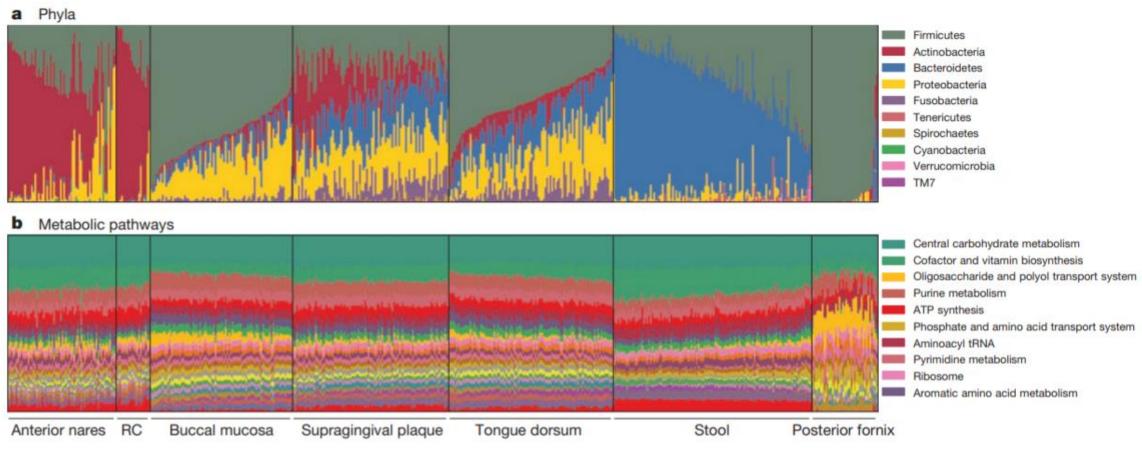
Various microbiomes



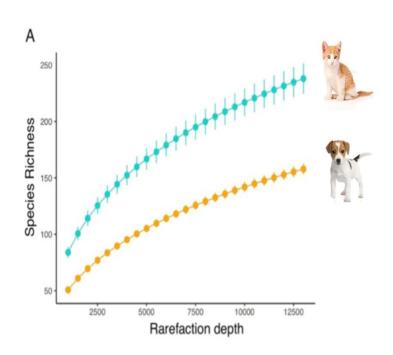
Pereira & Clemente, 2021

Gut microbiome

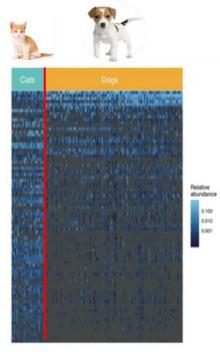
- Different compartments
- Large intestine
- Fecal sample
- Bacteria


Schmitz & Suchodolski 2016

https://quizlet.com/252065925/dog-digestive-system-diagram/



Gut microbiome: composition vs. function



Gut microbiome: dog vs. cat

Main phyla

- Firmicutes
- Bacteroidetes
- Proteobacteria
- Fusobacteria
- Actinobacteria

Jha et al., 2020

Gut microbiome: diet effect

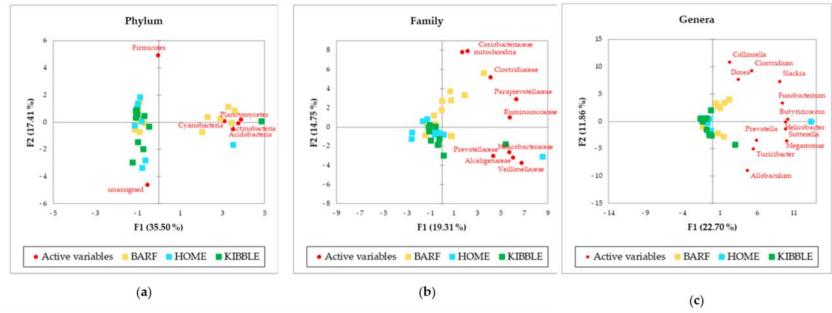
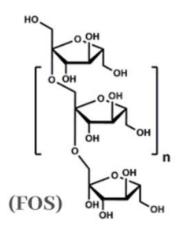
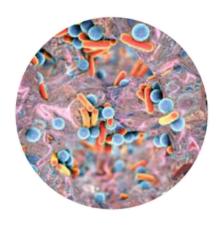



Figure 2. Principal Component Analysis (PCA) of bacteria Absolute Abundancies (AA) regarding (a) phylum level, (b) family level and (c) genus level on fecal samples of dogs fed with a raw-meat-based diet (BARF), a homemade based diet (HOME) and a commercial complete extruded diet (KIBBLE).


Dietary modulation of gut microbiome: -biotics

Probiotics

Postbiotics

ISAPP definitions

Probiotics

Live microorganisms that, when administered in adequate amounts, confer a health benefits on the host (2014)

Prebiotics

A substrate that is selectively utilized by host microorganisms conferring a health benefit (2017)

Synbiotics

A mixture comprising live microorganisms and substrate(s) selectively utilized by host microorganisms that confers a health benefit on the host (2020)

Postbiotics

A preparation of inanimate microorganisms and/or their components that confers a health benefit on the host; It must contain inactivated microbial cells or cell components, with or without metabolites, that contribute to observed health benefits. (2021)

The International Scientific Association for Probiotics and Prebiotics (ISAPP)

Gut microbiome modulation: Prebiotics

Table 5. Concentrations of fecal short-chain (SCFA) and branched-chain fatty acids (BCFA; μ mol/g of fecal DM) for cats fed select fibers

	Treatment				
Item	Cellulose	FOS^1	Pectin	$PSEM^2$	P-value ³
SCFA					
Acetate	172.9 ^a	217.9^{ab}	291.8^{b}	30.0	0.030
Propionate	58.3^{a}	61.1^{a}	$109.0^{\rm b}$	14.9	0.035
Butyrate	$39.2^{\rm a}$	$97.3^{ m b}$	$94.3^{\rm b}$	13.6	0.010
Total SCFA	270.3^{a}	376.3^{ab}	$494.0^{\rm b}$	48.7	0.016
BCFA + valerate					
Isobutyrate	8.2^{a}	12.6^{b}	12.6^{b}	1.2	0.011
Isovalerate	13.3^{a}	$21.0^{ m b}$	$21.1^{ m b}$	2.2	0.012
Valerate	22.5^{a}	29.8^{b}	30.1^{b}	2.5	0.026
Total BCFA + valerate	44.0^{a}	63.3^{b}	63.9^{b}	5.4	0.008

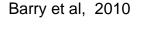
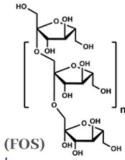



Table 7. Fecal microbial genera (log₁₀ cfu/g of fecal DM) of cats fed select fibers

		Treatment			
Item	Cellulose	FOS^1	Pectin	$PSEM^2$	P -value 3
Bifidobacterium spp.	10.4ª	11.6 ^b	10.7ª	0.3	0.006
Clostridium perfringens Escherichia coli	$10.3^{ m a} \ 9.3^{ m b}$	$10.1^{\rm a} \ 8.4^{\rm a}$	11.5 ^b 11.1 ^c	$0.3 \\ 0.3$	<0.001 <0.001
Lactobacillus spp.	10.9 ^a	11.0 ^a	$11.2^{\rm b}$	0.1	0.030

 $^{^{\}mathrm{a-c}}$ Different superscript letters in the same row denote differences (P < 0.05) among treatments.

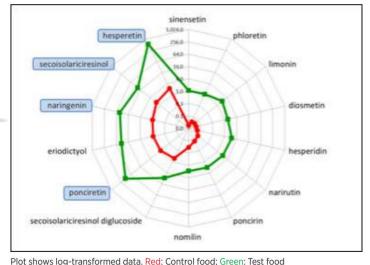


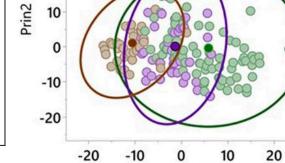
¹Fructooligosaccharides.

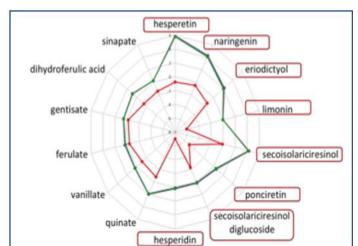
²Pooled SEM.

³Indicates type 3 fixed effect of diet.

Gut microbiome modulation: Prebiotics


TF1: Ground pecan shells, Flaxseed, Dried beet pulp, Dried citrus pulp, Pressed cranberries and Psyllium seed husk


TF2: Powdered cellulose, Rice hulls, Dried beet pulp, Psyllium seed husk and Fructooligosaccharides


40

30

20

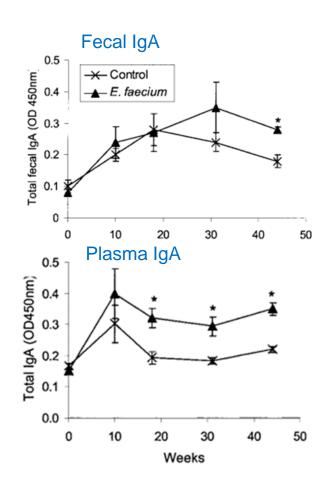
Plot shows log-transformed data. Red: Control food; Purple: Test food 4 weeks; Green: Test food 8 weeks.

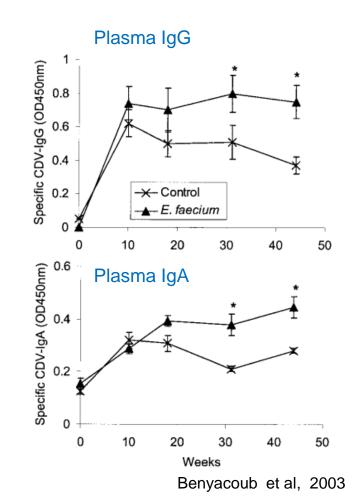
Fritsch et al, 2023

Prin1

TF1

O TF2


30


Wernimont et al, 2019

Gut microbiome modulation: Probiotics

#petfoodforum

Gut microbiome modulation: Probiotics

Medians (1st;3rd quartiles) of fecal score, ammonia, and fecal odor of dogs fed the control or B. subtilis C-3102diet.

Item	Control	B. subtilis C-3102	P value
Score Ammonia (g/kg)	3 (3;4) 0.705 (0.601;0.776)	4 (3;4) 0.602 (0.589;0.625)	<0.001 0.037
Odor	2 (2;2)	1 (1;2)	< 0.001

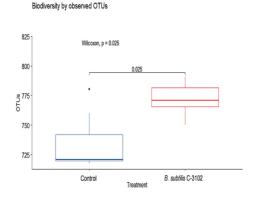


Fig. 2. Richness of bacterial communities (number of OTUs per 12,804 reads) of feces of dogs fed the control or Bacillus subtilis C-3102 diet (P = 0.025).

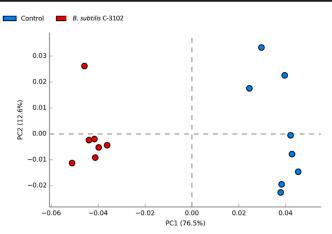
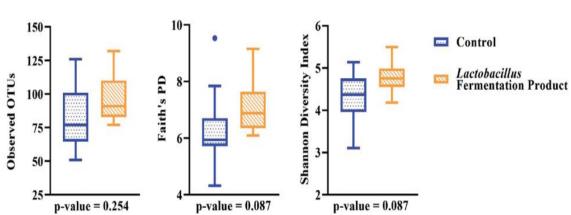


Fig. 1. Principal component analysis (PCA) of the bacterial community in feces of dogs fed the control or Bacillus subtilis C-3102 diet.

De Lima et al., 2020



Gut microbiome modulation: Postbiotics

Heat killed Lactobacillus delbrueckii & Lactobacillus fermentum

Figure 2. Alpha diversity measures of fecal samples collected from dogs supplemented with *Lactobacillus* fermentation product or placebo (dextrose) control. Alpha-diversity is represented by observed OTU, Faith's phylogenetic diversity (PD), and Shannon diversity index. Faith's PD and Shannon diversity index suggest that species richness tended to be higher in dogs supplemented with *Lactobacillus* fermentation product than those fed the control. The observed OTU comparison, however, did not reach statistical significance.

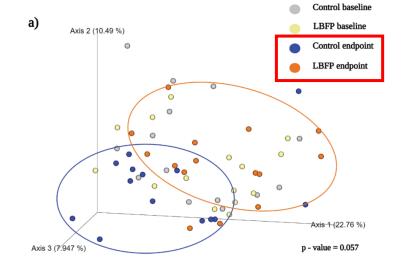


Figure 3. Beta diversity measures of fecal samples collected from dogs supplemented with Lactobacillus fermentation product or placebo (dextrose) control. Principal coordinates analysis (PCoA) plots of unweighted (a) and weighted (b) UniFrac distances of fecal microbial communities were performed on the 97% OTU abundance matrix using QIIME2. Unweighted UniFrac distances suggest a trend of bacterial population separation between treatment groups.

Koziol et al, 2023

Gut microbiome modulation: Postbiotics

Heat killed Lactobacillus delbrueckii & Lactobacillus fermentum

https://www.purinainstitute.com/science-of-nutrition/promoting-gastrointestinal-health/non-replicating-microorganism

NRM: Non-replicating Microorganisms (Heat killed Lactobacillus delbrueckii & Lactobacillus fermentum)

Comparison of Pre-, Pro- & Postbiotics

	Prebiotics	Probiotics	Postbiotics
Characteristics	Mostly polysaccharides	Live microorganisms	Dead microorganisms
Health benefits	Yes	Yes	Yes
Heat resistance	Yes	No	Yes/No
Applications	Dry, Wet, Treat, Supp.	Dry, Treat, Supp.	Dry, Wet, Treat, Supp.
Availability	Many	Limited (EU)	Limited/Increasing
Storage stability	Stable	Unstable	Stable/Unstable
Awareness of pet owners	Good	Good	Poor/Improving
Market penetration	Excellent	Good (US)	Poor/Increasing

Thank You!

https://www.istockphoto.com/photo/cats-and-dogs-over-thanksgiving-pumpkins-gm877205556-244802876

