

Dr. Jason Shelton Kemin Nutrisurance

Agenda

- Spoilage Risks
- Testing Methods
- MCFA Mode of Action

Petfood Industry Market Trends

CLEAN LABELS

- Limited ingredient diets
- Limited processing (raw, fresh, frozen, freeze-dried)
- Environmentally friendly, natural, novel ingredients

PREMIUMIZATION / HUMANIZATION

- Trickle down effect from human foods
- "What's good for me is good for my pet"
- Culinary experience

SUSTAINABILITY

- Trends to action
- Packaging
- Novel ingredients
- Increased value of rendered fats and proteins

Spoilage Risks

Food Safety Microorganisms

Fungi

- Immobile
- Spread by spores
- Molds and Yeasts
 - Zygosaccharomyces
 - Eurotium/Aspergillus spp.

Bacteria

- Mobile
- Not visible with naked eye
- Friendly and non-friendly
 - Salmonella spp.
 - L. monocytogenes

What is Microbial Spoilage

Deterioration of raw materials, unfinished ingredients, or finished pet products by **naturally occurring or contaminant microbes**

FORUM ASIA

- Color, Odor, and Texture Changes
- Pockets Of Gas and Package Swelling
- Vitamin and Amino Acid Instability
- Elevated Free Fatty Acid Content
- Reduction of Nutrient Value
- Reduced Shelf-life
- Pet Rejection
- Recall

Inherent Product Risks

#petfoodforum

FORUM

ASIA

Many product forms are at increased risk due to high **water activity**

Quality and Performance Compromised

- Reduced shelf-life
- Decline in nutritive value
- Negative color and texture effects
- Reduced palatability
- Pet rejection

Microbial Risk Management

Process Controls

- Process flow contamination post kill step
- Thermal regulation
- Product formulation
- Package integrity

Sanitation Controls

• Equipment and employee hygiene

Supply Chain Controls

Raw material analysis

PETFOOD FORUM ASIA

Product formulation

Well-controlled formulation parameters – water activity (a_w), % moisture, pH, and antimicrobial preservation technology – work in concert to create undesirable conditions for spoilage organism growth in pet treats and ingredients.

#petfoodforum

Effective microbial risk management requires a complete hazard analysis on the entire supply chain and production process, with preventative controls put in place

Water Activity and Microbial Growth

Beuchat, L.R. 1983. Influence of water activity on growth, metabolic activities, and survival of yeasts and molds. Journal of Food Protection 46:135-141, 150 Sperber, W.H. 1983. Influence of water activity on foodborne bacteria-a review. Journal of Food Protection 46: 142-150 Lenovich, L.M. 1987. Survival and death of microorganisms as influenced by water activity. In: Rockland LB, Beuchat L (eds) Water activity: theory and applications to food. Marcel Dekker, Inc., New York, pp 119–136 Scholar

Water activity (a_w)

Water Activity and Microbial Growth

#petfoodforum

FORUM

ASIA

Risk Management Process Control: Product formulation

- Water activity (a_w) and % Moisture
- pH
- Antimicrobial technology

Services and Lab Analysis

Active Ingredient Recovery

• Application and blending confirmation

pH, Water Activity, Proximates (fat, protein, moisture)

Product characterization

Microbial Enumerations

Microbial load and risk determination

Application Research

Processing, handling, ingredient compatibility, application point, dosage optimization

Treatment Efficacy Evaluations

Shelf-life

• Evaluates real-time interactions between a_w, moisture, pH, packaging, etc. at ambient temperature. Samples monitored daily for visual mold growth.

Mold Challenge

- Evaluates comparative efficacy between samples in presence of added humidity, optimized to accelerate mold growth (28°C, 86-90% Relative Humidity)
- Treatments may be *further* challenged by mold inoculum application, and added humidity

Microbial Spoilage and Application Analyses

- Water activity (a_w), pH, % moisture
- Incoming treat mold and yeast counts
- Acid recovery treatment quantification requires untreated control

Challenge Model Learnings

- Assessment of manufacturing critical control points
- Validate lethality of pathogens through processing
- Evaluate effectiveness of preservatives
- Validate new or modified product formulation
- Appraise shelf-life risks

Challenge testing can be a powerful tool to evaluate effectiveness of thermal exposure, pressure processing, and food formulations to significantly reduce food safety risks

Growth Inhibition Food Spoilage Challenge

	Mold Challenge	Yeast Challenge	
Challenge Organism	Aspergillus ruber at 10 ⁶ cfu / mL	<i>Zygosaccharomyces bailii</i> at 10 ⁵ cfu / g	
Temperature Stress	Elevated (27°C ± 2°) or Ambient	Elevated (27°C ± 2°)	
Moisture Stress	85% RH or Ambient	Ambient	
Timeline	30 days	10 days	

Spoilage Challenge in Pet Treat Model

How do natural preservatives perform against mold and yeast spoilage in pet treats?

Semi-Moist Treat Model aw= 0.86 Moisture = 26%

Yeast Method

Pet food spoilage model designed to permit growth of a lowmoisture, acid-resistant, yeast strain

Allows investigation into yeast behavior and survival under specified conditions designed to model food product experiencing a worst-case scenario high yeast contamination event

Mold Method

Pet food spoilage model designed to permit growth of a lowmoisture mold strain isolated from commercial treats

Allows investigation into mold behavior and survival under specified conditions designed to model food product experiencing a worst-case scenario high mold contamination event

Yeast Growth in Treats

- Treat model sufficient to allow yeast growth (aw 0.86)
- Yeast growth was significantly inhibited by natural and synthetic preservatives

PETFOOD FORUM

Medium Chain Fatty Acid

Common Approaches for Microbial Growth

	Microbial Target		
	Mold	Yeast	Bacteria
Acetic Acid and Buffered Vinegar			
Ascorbic Acid	-	-	
Citric Acid	\checkmark		
Lactic Acid & Lactates	-	-	
Phosphoric Acid			
Propionic Acids & Propionates		-	
Sorbic Acid & Potassium Sorbate			
Phosphoric Acid			
Medium Chain Fatty Acids			

Organic Acid for Risk Management

Risk Management Process Control:

Product formulation

FORUM

ASIA

- Water activity (a_w) and % Moisture
- pH
- Antimicrobial technology

	рН		
Undissociated (%)	Propionic	Lactic	Acetic
99	2.87	1.83	2.76
95	3.59	2.55	3.48
90	3.92	2.88	3.81
80	4.27	3.23	4.16
70	4.50	3.46	4.39
60	4.69	3.65	4.58
50%	4.87	3.83	4.76
40	5.05	4.01	4.94
30	5.24	4.20	5.13
20	5.47	4.43	5.36
10	5.82	4.78	5.71
1.0	6.87	5.83	6.76
0.5	7.17	6.13	7.06

Organic Acid Mode of Action

- → Undissociated acid (neutral charge) enters cell
- → Acid dissociates inside cell, due to higher pH
- → Charged dissociated acid cannot escape cell
- → Accumulation acidifies cell and depletes energy

Normal cell physiology is disrupted by the combination of intracellular pH drop and cellular energy depletion

Membrane Disruption Mode of Action

Vital components of cellular matrix:

- ATP / ADP energy 🏓
- DNA / RNA protein synthesis X
- Proteins Cell functionality

Membrane Disruption Mode of Action

Yeast Control: MCFA

#petfoodforum

Inhibition in semi-moist indulgent dog treat challenged with Zygosaccharomyces bailii yeast

Yeasts Grow in Low Moisture Conditions

Error bars represent standard deviation of mean growth (n=1, triplicate plates)

MCFA Liquid inhibits growth of resilient yeast strain known to spoil low water activity petfoods

Mold Control: MCFA

Inhibition in a semi-moist indulgent dog treat challenged with Aspergillus ruber mold

Error bars represent standard deviation of mean days-to-mold (n=1, triplicate inoculation)

Data Source: Kemin-SD-2123851

Palatability: MCFA

- Palatability trials were conducted with dogs from Summit Ridge Farms (Susquehanna, PA, USA)
- Goal: evaluate palatability of MCFA Liq (0.4%) against synthetic control Potassium sorbate (0.3%)

MCFA Liquid is effective at a low dose, with Palatability accepted up to 0.4%

Natural Spoilage Control in Pet Treats and Ingredients

Application rate

MCFA: 0.2% - 0.4%

When a microbial hurdle technology is applied to pet foods, the actual inclusion rate will depend upon formulation, storage conditions, and desired storage time of the pet food product.

Natural Pet Treat Preservation

MCFA Liquid provides natural shelf-life extension <u>without</u> <u>acidification</u>, for a versatile microbial hurdle option featuring pantry-friendly labeling.

THANK YOU

